8.1 Arc Length

Suppose we are given a continuous, smooth $\left(f^{\prime} \neq 0\right)$ function $f(x)$ defined over $[a, b]$. How might we find the length?

See Desmos animation on 5B page: https://www.desmos.com/calculator/jo1tkthwmq

Derivation of arc length formula: $y=f(x) ; a \leq x \leq b$

$$
L=\int_{a}^{b} \sqrt{1+\left(f^{\prime}(x)\right)^{2}} d x=\int_{c}^{d} \sqrt{1+\left(\frac{d y}{d x}\right)^{2}} d x
$$

Example: Find the length of the curve given by $f(x)=\frac{x^{2}}{2}-\frac{\ln x}{4} ; \quad 2 \leq x \leq 4$

Similarly, if $x=g(y) ; c \leq y \leq d$, we can show. $L=\int_{c}^{d} \sqrt{1+\left(g^{\prime}(y)\right)^{2}} d y=\int_{c}^{d} \sqrt{1+\left(\frac{d x}{d y}\right)^{2}} d y$
Example: Find the length of the curve given by $y^{3}=x^{2}$ from $(0,0)$ to $(8,4)$.
Can be done either way, which is easier?

10.1: Parametric Equations in R^{2}

(For an interesting introduction to parametric equations, see "Quick Intuition about Parametric Equation"s on the 5B page)
We have learned that the graphs of equations in two variables are curves in R^{2} showing a relationship between the two variables, suppose x and y . Sometimes the relation can be expressed as a function, other times it cannot.

$x^{2}+y^{2}=1$

In this section, we will consider another way to write equations for curves in R^{2}, called \qquad . This gives us the opportunity to
(1) \qquad and
(2) \qquad (later)

Showing dependence on a third variable

$$
\text { ice cream }=(\text { sunscreen })^{2}
$$

Often, the parameter is time.

Example: Sketch $\left\{\begin{array}{l}x=1-t \\ y=t^{2}\end{array}\right.$
Methods:

1. Plot points (last resort!)

2. Consider the graphs $\mathrm{x}(\mathrm{t})$ and $\mathrm{y}(\mathrm{t})$ separately to determine horizontal and vertical behavior. Then combine these "behaviors".

3. Eliminate the parameter (best, if possible). Caution: \qquad

What if the problem was $\left\{\begin{array}{l}x=1-t^{2} \\ y=t^{4}\end{array}\right.$

Always show direction of increasing t.

What if the problem was $\left\{\begin{array}{l}x=1-t^{2} \\ y=t^{4}\end{array}\right.$

1. Eliminate the parameter (best, if possible). Caution: \qquad

Example: Sketch $\left\{\begin{array}{l}x=e^{t} \\ y=e^{2 t}\end{array}\right.$

Expressing an equation that is not a function in terms of two which are.

Example: Sketch $\left\{\begin{array}{l}x=\cos t \\ y=\sin t\end{array}\right.$

First consider $\mathrm{x}(\mathrm{t})$ and $\mathrm{y}(\mathrm{t})$ separately

animation from 5B page: https://www.desmos.com/calculator/vslkzgeocx

Example: Direction of increasing t

Sketch $\left\{\begin{array}{l}x=2 \sin t \\ y=3 \cos t\end{array}\right.$

Consider $\mathrm{x}(\mathrm{t}), \mathrm{y}(\mathrm{t})$ if needed

Sometimes, only a portion of the curve is specified
Example: Sketch $\left\{\begin{array}{l}x=2 \sin t \\ y=3 \cos t\end{array} \quad \frac{\pi}{2} \leq t \leq \pi\right.$

More interesting animation from 5B page: https://www.desmos.com/calculator/w9ab0dxrp3

Additional Problems on Parametric Equations
Match the graphs of the parametric pair $x(t)$ and $y(t)$ on the left with the graph in the $x y$ plane on the right.

Parameterization is not unique: 5B page: parameterization is not unique

$$
\left\{\begin{array} { l }
{ x = t } \\
{ y = t ^ { 2 } }
\end{array} \quad \left\{\begin{array}{l}
x=1-t \\
y=(1-t)
\end{array}\right.\right.
$$

Cross paths vs collision: 5B page Collide vs Cross

10.2 Calculus of Parametric Equations (derivatives, tangents and length)

Given $\left\{\begin{array}{l}x=f(t) \\ y=g(t)\end{array}\right.$, if we can eliminate the parameter we get \qquad

To find $F^{\prime}(x)=\frac{d y}{d x}$, chain rule: $F^{\prime}(x)=\frac{d y}{d x}=$ \qquad for f, g differentiable and $\frac{d x}{d t} \neq 0$

Example: Given $\left\{\begin{array}{l}x=e^{t} \\ y=e^{2 t}-1\end{array}\right.$, if we express these equations in the form $y=F(x)$ find $F^{\prime}(x)=\frac{d y}{d x}$ both directly, and by eliminating the parameter.

Example: For $\left\{\begin{array}{l}x=2 t^{3} \\ y=1+4 t-t^{2}\end{array}\right.$,
(a) Find an equation of the tangent line at $(2,4)$
(b) At what point on the above curve is the slope of the tangent line 1?
(c) Find $\frac{d^{2} y}{d x^{2}}$

Arclength: For a function $y=F(x)$ which can be expressed parametrically as $\left\{\begin{array}{l}x=f(t) \\ y=g(t)\end{array}\right.$

$$
L=\int_{a}^{b} \sqrt{1+\left(F^{\prime}(x)\right)^{2}} d x=\int_{c}^{d} \sqrt{1+(-)^{2}} d x=\int_{c}^{d} \sqrt{(-)^{2}+(-)^{2}} d x=
$$

Example: Find the length of the curve given by $\left\{\begin{array}{l}x=e^{t}+e^{-t} \\ y=5-2 t \\ 0 \leq t \leq 3\end{array}\right.$

